
vision42

Initiative for an auto-free light rail boulevard on 42nd Street by the Institute for Rational Urban Mobility, Inc. (IRUM)

Cost Estimate Update February 2008

Halcrow, Inc.

vision42 an auto-free light rail boulevard for 42nd Street

Cost Estimate Update

Daniel Dillon, Project Manager Helga Junold, Project Director

Halcrow, Inc

22 Cortlandt Street New York, NY 10007 212-608-4963

February 2008

vision42

Roxanne Warren, AlA, Chair George Haikalis, ASCE, Co-Chair

The **vision42** proposal is a citizens' initiative sponsored by the Institute for Rational Urban Mobility, Inc. (IRUM), a New York City-based not-for-profit corporation concerned with advancing cost-effective transport investments that improve the livability of dense urban places.

This study was performed to update costs developed in a prior study, review the current status of fuel cell technology, and revisit the surface power conductor system currently in use in Bordeaux, France. It was made possible through a generous grant from the New York Community Trust/Community Funds, Inc., John Todd McDowell Environmental Fund.

Institute for Rational Urban Mobility, Inc. P.O. Box 409, New York, NY 10014 (212) 475-3394 www.irum.org www.vision42.org.

TABLE OF CONTENTS

1	Executive Summary and Recommendations	1
2	Introduction	1
	2.1 The vision42 Project Scope	1
3	Updated Cost Estimate	2
	3.1 Cost Assumptions	2
	3.2 Estimate of Capital Costs	2
	3.3 Estimate of Operating Expenses	6
4	Fuel Cells	9
5	Surface Power Conductor	11
App	pendix A	13
	Table A.1 – Capital Cost Estimate for Alternative LRT Options in 2004 Dollars	13
	Table A.2 – Estimate of Annual Costs in 2004 Dollars	14
Арр	endix B	15
	Details of Costs for Relocation of Utilities in 2004 Dollars	15
App	pendix C	17
	Details of Base Costs for Streetwork, Landscaping and Stops in 2004 Dollars	17

1 Executive Summary and Recommendations

- Taking into account recent escalation in construction and materials procurement cost, a 2.5-mile surface light rail line in a landscaped 42nd Street, with 16 pairs of stops, will cost between approximately \$411 and \$582 million in 2007 dollars, depending upon the extent of utility relocations and the choice of propulsion system.
- Although hydrogen fuel cell technology remains relatively expensive and is
 expected to continue to be so until there is more local distribution, the single
 pilot installation on 42nd Street would not need an extensive distribution network.
 Several manufacturers are currently performing research and development to
 incorporate fuel cell technology into their vehicles with significant progress
 being made in hybrid applications.
- The surface power conductor system in use in Bordeaux since late 2003 had undergone major modifications and improvements in 2005 and has exhibited noticeable improvements in reliability, leading to its use on additional projects in France. A remaining area of concern is the affect of flooding on the system, which can be mitigated through proper drainage design and installation. The system is still unproven in regions with extreme sub-freezing temperatures.

2 Introduction

2.1 The vision42 Project Scope

This study is an update of a previous study performed in 2005, which examined the cost, in 2004 dollars, of providing a highly convenient and accessible surface public transportation system on New York City's famed 42nd Street.

This study updates the capital cost estimates for the three possible light rail options previously identified and the annual operating costs of the system, through the use of applicable cost indexes.

Additionally, an update is provided on the current status of fuel cell technology, and the surface power conductor system in use in Bordeaux, France is revisited.

3 Updated Cost Estimate

3.1 Cost Assumptions

The approach taken to develop the inputs for the updated cost estimate and the process by which costs have been updated is as follows:

3.1.1 Base Year

The original cost estimate for the **vision42** program was prepared in a prior study and is based on 2004 dollars. This original cost estimate was updated to a base year of **2007** using analyzed historical data.

3.1.2 Inflation

To calculate the future nominal costs of the **vision42** program, assumptions with regards to inflation have been developed. The updated cost model distinguishes between two inflation rates - Consumer Price Index (CPI) and Construction Cost Index (CCI). The reason for this differentiation is because the majority of operating cost items are typically influenced by CPI while capital expenditure items are typically influenced by the CCI.

A data review of publicly published sources was undertaken to identify CPI and CCI trends. The sources reviewed include the Bureau of Labor Statistics (BLS), Engineering News Record (ENR) - Construction Cost Index (CCI) and Building Cost Index (BCI), and the USDoT Federal Highway Administration.

Upon examining the data, it was apparent that greater fluctuations existed in the CCI compared to the CPI. Based on our analysis of published statistics, CPI averaged 3.44% per annum over the last two decades in the New York metropolitan area¹. In contrast, the CCI, when adjusted for heavy and civil engineering construction projects using BLS wage rate statistics, averaged 5.75% per annum in the New York area during the same time profile².

3.2 Estimate of Capital Costs

Costs have been estimated for the following three steel wheel/steel rail options:

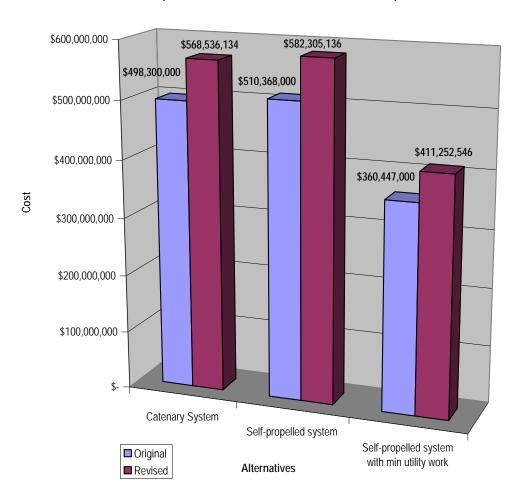
- conventional catenary system power supply,
- self-propelled vehicles using fuel cell technology or nickel cadmium batteries,
- self-propelled vehicles with beams (instead of a continuous slab) supporting the rails, to limit the diversion of the sewer mains and some of the other utilities.

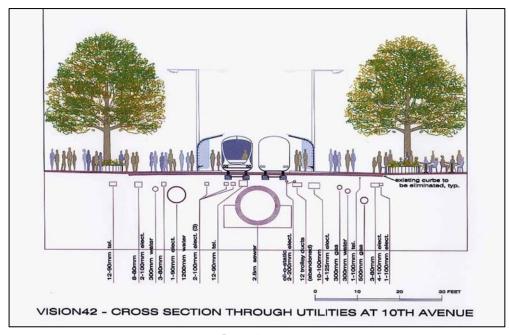
¹ All Urban Customers (New York-Northern New Jersey-Long Island). Source: Bureau of Labour Statistics, BLS

² Building Cost Index for the State of New York. Source: Engineering News Record

Table 3.1 indicates the capital cost estimate updated to 2007 dollars. The basis for these costs is the original cost estimate study that was prepared in 2004 dollars.

Table 3.1 - 2007 Base Year Capital Cost Estimate for Alternative LRT Options


2007 Price Level


			2007 Price Level
Element	Catenary System	Self-Propelled System	Self-Propelled System with Minimum Utility Work
Utility Relocation *	\$364,011,449	\$364,011,449	\$215,269,024
Streetwork, Landscaping & Stops *	\$66,973,853	\$66,973,853	\$66,973,853
Trackwork	\$22,305,602	\$22,305,602	\$22,305,602
Electrification - feeder substations	\$4,192,997	\$3,422,855	\$3,422,855
Electrification - overhead wire or power rail	\$5,590,662	-	-
Control and communications	\$3,822,188	\$3,822,188	\$3,822,188
Yard and Buildings	\$13,120,942	\$13,120,942	\$13,120,942
Land & Property acquisition	\$5,704,758	\$5,704,758	\$5,704,758
Subtotal	\$485,722,451	\$479,361,647	\$330,619,222
Vehicles (14 number)	\$63,893,284	\$83,061,269	\$83,061,269
Contingencies	\$54,961,916	\$56,242,063	\$41,368,620
Engineering & Construction management	\$24,286,294	\$23,967,968	\$16,531,246
Net Present Value of Savings in Capital Cost from Eliminating Bus Routes (Over 30 Year LRT Lifespan)	-\$60,327,811	-\$60,327,811	-\$60,327,811
Total Project	\$568,536,134	\$582,305,136	\$411,252,546

All costs are in 2007 dollars.

^{*} See Appendix A -Base Capital Costs and Operating Expenses (2004 Dollars), Appendix B - Base Cost Details for Relocation of Utilities (2004 Dollars), and Appendix C - Base Cost Details for Streetwork, Landscaping and Stops (2004 Dollars) for original estimate values and details.


Capital Cost Estimate for Alternative LRT Options

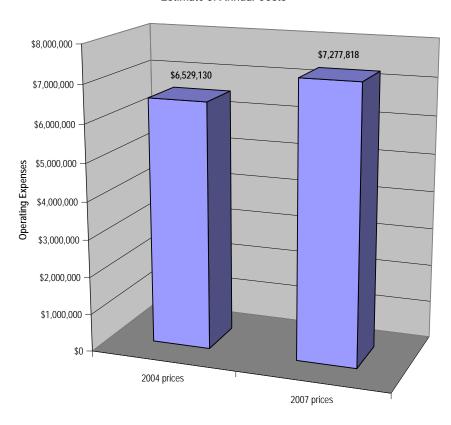
Page 4

Map of vision42 Light Rail Route

Page 5

3.3 Estimate of Operating Expenses

Table 3.3 indicates the Operating Expenses in the updated 2007 estimated cost.


Table 3.3 - Annual Operating Expenses

Danning	11-24	O. a. atit.	Unit Rate (2004	Annual Operating Expenses (2007
Resource	Unit	Quantity	Dollars)	Dollars)
Vehicle Operations	T			
Operations Manager	Person Years	1	\$121,500	\$135,432
Admin Support	Person Years	1	\$40,500	\$45,144
Crew Dispatcher	Person Years	3	\$81,000	\$270,865
Drivers	Person Years	40	\$70,200	\$3,129,992
Chief Dispatcher	Person Years	1	\$101,250	\$112,860
Dispatchers	Person Years	5	\$81,000	\$451,441
Revenue Collectors	Person Years	4	\$40,500	\$180,576
Security	Person Years	3	\$47,250	\$158,004
Electric Power	Vehicle kms	530,800	\$0.32	\$191,180
Casualty / Liability	Vehicle kms	530,800	\$0.12	\$73,531
				\$4,749,025
Vehicle Maintenance				
Maintenance Manager	Person Years	1	121,500	\$135,432
Admin Support	Person Years	1	40,500	\$45,144
Foreman - Vehicles	Person Years	3	87,750	\$293,437
Mechanics	Person Years	4	74,250	\$331,057
Electricians	Person Years	3	74,250	\$248,293
Cleaners	Person Years	2	47,250	\$105,336
Spares and consumables	Per Vehicle	13	9,300	\$134,764
				\$1,293,463
Foreman - Way & Structures	Person Years	1	87,750	\$97,812
Electrical Maintainers	Person Years	2	74,250	\$165,528
Track Maintainers	Person Years	2	67,500	\$150,480
Storekeeper	Person Years	3	67,500	\$225,721
Track Materials	Track kms	8	18,642	\$167,200
	•	•		\$806,741

Resource	Unit	Quantity	Unit Rate (2004 Dollars)	Annual Operating Expenses (2007 Dollars)
General Admin				
General Manager	Person Years	1	141,750	\$158,004
Office administrator	Person Years	1	54,000	\$60,192
IT Support	Person Years	1	60,750	\$67,716
Office Equipment including IT	Item	1	30,000	\$33,440
Office Utilities	Monthly Allowance	12	2,000	\$26,752
Office Consumables	Monthly Allowance	12	2,000	\$26,752
Contingency	Item	1	50,000	\$55,733
				\$428,589
				\$7,277,818

All costs are in years as indicated.

Estimate of Annual Costs

Comparison of Light Rail and Bus System O&M Costs

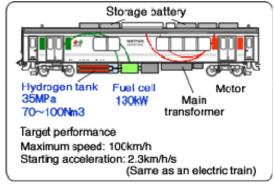
2007	LRT	Replaced Bus Services
Vehicle Operations	\$4,749,025	\$6,272,245
Vehicle Maintenance	\$1,293,463	\$968,648
Non-Vehicle Maintenance	\$806,741	\$55,733
General Administration	\$428,589	\$55,733
Total	\$7,277,818	\$7,352,359
Cost/Place Mile	\$0.10	\$0.37

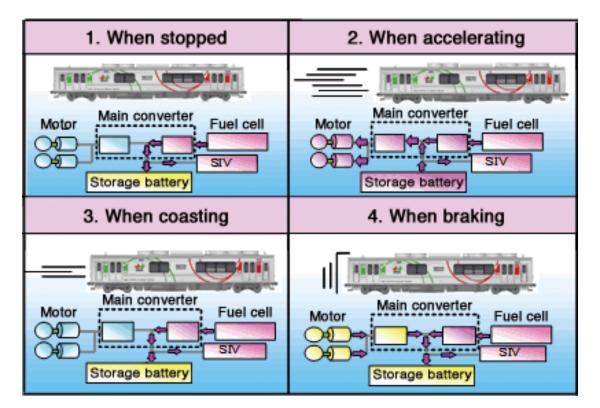
4 Fuel Cells

Fuel cells are still relatively expensive and have been mainly limited to specialized applications and limited pilot trials. Currently, there are no large scale passenger railways in service using fuel cells. More detailed plans, driven by environmental issues to create such a service, are developing. Groups based in Scandinavia are actively pressing to develop a prototype main line service. The emerging importance of energy conservation to prevent global warming is also increasing support for hydrogen fuel cells. Other developments, such as carbon footprinting, are becoming a standard requirement on all new projects in Europe. This is adding greater pressure to maximize sustainability and minimize the direct or indirect use of fossil fuel power sources.

Major manufacturers of street-running light rail vehicles are currently undertaking additional research and development aimed at incorporating fuel cell applications as an option in their standard vehicles. The manufacturers' studies have had direct relevance and help support ideas previously proposed for **vision42**. Alstom, whose clients include the MTA (New York), Amtrak, and New Jersey Transit to name a few, presented some of their initial findings in June 2006 at the 2nd International Hydrogen Train and Hydrail Conference held in Denmark. Alstom concluded that there is a real and growing need for "wireless" Light Rail systems; however, further progress is still required to make fuel cells a commercially viable alternative for light rail vehicle applications. Bombardier is also currently in the early stages of looking at similar developments for their vehicles.

Progress has been made in the area of hybrid power supply applications. An important development is the increased recognition of the benefits in using energy conservation/storage systems that can be combined with and tailored to suit situations on any particular light rail route. A typical system application is to use an energy storage system that is charged during braking, such as a flywheel, and super-capacitors or batteries, such as lithium-ion or nickel/metal hydride. This energy storage system is connected in parallel with the prime source of power, which for example, could be fuel cell, hydrogen powered engine or external electrical power supply. Provided that there is sufficient available power in the energy storage system, the energy storage system will be used to power the propulsion drive line of the vehicle, thereby conserving capacity in the prime power source.


Yet another important advance is the continued operating cost and performance data being collected from many other bus-based fuel cell systems and the incorporation of this data into the research and development of light rail vehicle manufacturers.


As is evident from Mayor Bloomberg's initiative for congestion pricing, the need for environmentally friendly public transportation continues to grow in New York City.

Fuel cell powered light rail vehicles are a zero emission alternative that can also minimize costly utility diversions. Until there is more local distribution infrastructure for fuel, the cost of fuel cells remains a major issue prohibiting its wide scale use; however an extensive distribution network would not be required for the single pilot installation on 42nd Street.

Figure 4.1 NE Train: Fuel Cell Hybrid Train Developed by East Japan Railway Company

http://www.jreast.co.jp/e/development/theme/environment/environment01.html

5 Surface Power Conductor

The surface power rail system installed on 6½ miles (10.5 km) of the 15½ mile (25 km) 3 line light rail network in Bordeaux has been in revenue operation since December 2003. This system, installed by Alstom and originally known as Innorail, is now marketed as APS (the abbreviation for *Alimentation Par le Sol*, or power supply from the ground). From its introduction, the system suffered serious problems which caused frequent and unacceptable service disruptions and led to an ultimatum from the mayor to Alstom in 2005 to rectify the problems or remove the system.

In response to this ultimatum, Alstom undertook major and costly modifications and improvements including complete replacement of cables in the ground and some onboard equipment in the light rail vehicles. By the end of 2005, the reliability had noticeably improved with only 0.92% and 0.97% disruption caused by the APS system on lines A and B respectively. The technical improvements were incorporated in a new approximately ½ mile (1 km) extension of line A which opened to revenue traffic in September 2005. This extension has performed with good reliability from the outset.

As a result of the improved reliability, the Phase 2 extensions in Bordeaux will incorporate a 1½ mile (2 km) route of additional APS. Three other suburbs in France have also either announced that they are planning to install APS or are seriously studying its use in some sensitive areas. These locations include new light rail networks in Angers and Reims and line 2 in Orleans.

The latest technical improvements now confirm that the APS system is technically sound and has proven it can achieve acceptable levels of reliability. The remaining weakness of APS is that when local flooding occurs in areas where good surface drainage cannot be achieved, service can be impacted. This can be overcome for an installation on 42nd Street, since the entire street roadbed between the curbs will be rebuilt with new paving and adequate drainage. (The original conduit power systems installed in the early 1900's in New York and Washington had dealt with this problem by incorporating deep drainage conduits below the power rails. For the APS installation, the power rails are on the surface, not in a conduit, and drainage can be incorporated in the overall design of the street.)

The main issue influencing the selection of APS for **vision42** is no longer an issue of reliability, but one of cost and disruption for the additional utility work that will be needed compared with those that would be needed for a self powered LRT vehicle. The additional utility work is a result of:

• The installation of the central power rail preventing the location of shallow utilities and manholes between the rails; and

• Stray currents from the DC power rail inducing electrochemical corrosion in metallic services including pipes, conduits and cables.

Although Bordeaux does experience freezing temperatures in the winter, Bordeaux's temperatures tend to be milder than those experienced in New York City. While the radio operation function of the APS should still function in the New York winter, the subsurface system is not yet proven in long periods of extreme subfreezing temperatures, and there is a risk that the APS will prove to be less reliable in extreme cold. In addition, snow and ice clearance is necessary to allow for contact with the conductor.

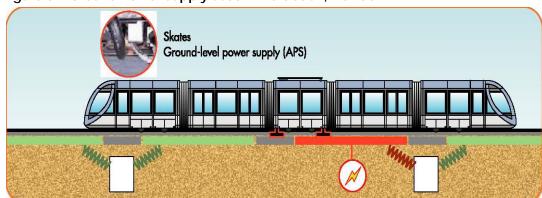


Figure 5.1 Ground Power Supply used in Bordeaux, France

http://www.veoliaenvironnement.com/visites/bordeaux en/technologies/ground-level.htm

Figure 5.2 Bordeaux LRT with Ground Power Supply located between tracks

http://www.railway-technology.com/projects/angers/angers3.html

Appendix A

Table A.1 - Capital Cost Estimate for Alternative LRT Options in 2004 Dollars

Element	Catenary System	Self-propelled system	Self-propelled system with min utility work
Utility Relocation *	\$319,042,000	\$319,042,000	\$188,675,000
Streetwork, Landscaping & Stops *	\$58,700,000	\$58,700,000	\$58,700,000
Trackwork	\$19,550,000	\$19,550,000	\$19,550,000
Electrification – feeder substations	\$3,675,000	\$3,000,000	\$3,000,000
Electrification - overhead wire or power rail	\$4,900,000	\$0	\$0
Control and communications	\$3,350,000	\$3,350,000	\$3,350,000
Yard and Buildings	\$11,500,000	\$11,500,000	\$11,500,000
Land & Property acquisition	\$5,000,000	\$5,000,000	\$5,000,000
Subtotal	\$425,717,000	\$420,142,000	\$289,775,000
Vehicles (14 number)	\$56,000,000	\$72,800,000	\$72,800,000
Contingencies	\$48,172,000	\$49,294,000	\$36,258,,000
Engineering & Construction management	\$21,286,000	\$21,007,000	\$14,489,000
Net Present Value of			
Savings in Capital Cost from Eliminating Bus Routes (Over 30 Year LRT Lifespan)	(\$52,875,000)	(\$52,875,000)	(\$52,875,000)
Total Project	\$498,300,000	\$510,368,000	\$360,447,000

All costs are at 2004 price levels. * See Appendix B – Details of Base Costs for Relocation of Utilities.

Table A.2 - Estimate of Annual Costs in 2004 Dollars

Resource	Unit	Quantity	Unit Rate	Total Cost
Vehicle Operations				
Operations Manager	Person Years	1	\$121,500	\$121,500
Admin Support	Person Years	1	\$40,500	\$40,500
Crew Dispatcher	Person Years	3	\$81,000	\$243,000
Drivers	Person Years	40	\$70,200	\$2,808,000
Chief Dispatcher	Person Years	1	\$101,250	\$101,250
Dispatchers	Person Years	5	\$81,000	\$405,000
Revenue Collectors	Person Years	4	\$40,500	\$162,000
Security	Person Years	3	\$47,250	\$141,750
Electric Power	Vehicle kms	530800	\$0.32	\$171,513
Casualty / Liability	Vehicle kms	530800	\$0.12	\$65,967
				\$4,260,480
Vehicle Maintenance				
Maintenance Manager	Person Years	1	\$121,500	\$121,500
Admin Support	Person Years	1	\$40,500	\$40,500
Foreman - Vehicles	Person Years	3	\$87,750	\$263,250
Mechanics	Person Years	4	\$74,250	\$297,000
Electricians	Person Years	3	\$74,250	\$222,750
Cleaners	Person Years	2	\$47,250	\$94,500
Spares and consumables	Per Vehicle	13	\$9,300	\$120,900
				\$1,160,400
Non-Vehicle				
Maintenance				
Foreman - Way &				
Structures	Person Years	1	\$87,750	\$87,750
Electrical Maintainers	Person Years	2	\$74,250	\$148,500
Track Maintainers	Person Years	2	\$67,500	\$135,000
Storekeeper	Person Years	3	\$67,500	\$202,500
Track Materials	Track kms	8	\$18,642	\$150,000
				\$723,750
General Admin				
General Manager	Person Years	1	\$141,750	\$141,750
Office administrator	Person Years	1	\$54,000	\$54,000
IT Support	Person Years	1	\$60,750	\$60,750
Office Equipment				
including IT	Item	1	\$30,000	\$30,000
	Monthly			
Office Utilities	Allowance	12	\$2,000	\$24,000
	Monthly			
Office Consumables	Allowance	12	\$2,000	\$24,000
Contingency	Item	1	\$50,000	\$50,000
				\$384,500
				\$6,529,130

All costs are at 2004 price levels.

Appendix B

Option A - Middle of 42nd Street

METERS OF UTILITIES TO BE RELOCATED

Details of Costs for Relocation of Utilities in 2004 Dollars

Total	102	154	126	182	408	382	160	290	596	226	424	408	474	009	476	971	586	880	336	737	1038	194	842	273	437	1562	372		212	672	178	925	315	1020	546	
Vaults	0	0	0	0	4	2	0	0	4	2	1	2	3	1	3	1	2	2	0	4	4	1	3	2	c	000	2		1	2	0	2	0	4	3	•
liO	0	0	0	12	0	0	0	100	140	0	100	120	0	100	0	120	100	120	0	0	160	0	0	20	O	200	0		0	0	0	160	0	12	0	
Telecom	24	9	0	12	0	0	12	18	0	30	100	0	24	0	0	48	150	10	30	0	0	12	20	0	36	48	0		30	12	12	25	24	30	100	
Gas	0	0	0	30	0	0	12	9	0	12	12	9	12	0	110	0	0	120	12	12	160	26	112	30	26	200	09		0	0	12	100	9	30	20	
Electric	12	18	9	38	208	240	34	99	316	06	112	144	330	300	146	678	250	510	254	200	902	112	260	175	330	1024	252		168	540	120	320	180	009	250	•
Water	9	0	0	9	100	22	18	0	0	20	0	18	108	100	110	125	80	120	40	0	0	38	20	30	07	50	09		9	120	18	160	45	156	80	
Sewer	0	110	120	84	100	82	24	0	0	58	100	120	0	100	110	0	9	0	0	25	12	9	08	18	9	30	0		0	0	9	0	0	9	9	
Sewer Main	09	20	0	0	0	38	09	100	140	45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c	10	0		8	0	10	160	09	186	09	
Station End	40+160	40+260	40+380	40+440	40+540	40+660	40+700	40+800	40+940	40+980	41+080	41+200	41+260	41+360	41+460	41+580	41+640	41+760	41+800	41+920	42+080	42+100	42+200	42+230	10±080	42+480	42+540		42+580	42+700	42+740	42+900	42+960	43+140	43+200	•
Station Start	40+108	40+160	40+260	40+380	40+440	40+540	40+660	40+700	40+800	40+940	40+980	41+080	41+200	41+260	41+360	41+460	41+580	41+640	41+760	41+800	41+920	42+080	42+100	42+200	72+230	42+280	42+480		42+540	42+580	42+700	42+740	42+900	42+960	43+140	
Location	12th Ave Intersection	W. 42nd Street	W. 42nd Street	11th Ave Intersection	W. 42nd Street	W. 42nd Street	10th Ave Intersection	W. 42nd Street	W. 42nd Street	9th Ave Intersection	W. 42nd Street	W. 42nd Street	8th Ave Intersection	W. 42nd Street	W. 42nd Street	7th Ave & Broadway	W. 42nd Street	W. 42nd Street	6th Ave Intersection	W. 42nd Street	W. 42nd Street	5th Ave Intersection	E.42nd Street	E.42nd Street	Madison Ave	F 42nd Street	E.42nd Street	Lexington Ave	Intersection	E.42nd Street	3rd Ave Intersection	E.42nd Street	2nd Ave Intersection	E.42nd Street	1st Ave Intersection	

Utility and vault relocation based on 6 meter effected area. (3 meters on either side of street center.)

²⁾ All values in meters. (Convert to feet multiply by 3.28)3) Sewer main represents 2.6 meter diameter pipe. Sewer represents .8 meter diameter.4) At intersections, minimum of 6 meters of utilities running north/south will have to be deepened to allow for LRT foundations.

ESTIMATED AMOUNT OF UTILITIES TO BE RELOCATED

ESTIMATED COST BREAKDOWN PER LINEAR FOOT OF

STREET

11,955 ft x \$17,500/ft = \$209,212,500

A) NO SEWER MAIN

3,138 ft x \$35,000/ft = \$109,830,000

SEWER MAIN

ESTIMATED TOTAL COST

\$319,042,000

Note:

_								Г											.					I	_	I	_									Г		П
Sewer Main	-	09	20	0	0	0	38	09	100	140	45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	0	10	0		8	0	10	160	09	186	09	
Street Station End	40+108	40+160	40+260	40+380	40+440	40+540	40+660	40+700	40+800	40+940	40+980	41+080	41+200	41+260	41+360	41+460	41+580	41+640	41+760	41+800	41+920	42+080	42+100	42+200	42+230		42+280	42+480	42+540		42+580	42+700	42+740	42+900	42+960	43+140	43+200	43+795
Street Station Start	39+193	40+108	40+160	40+260	40+380	40+440	40+540	40+660	40+700	40+800	40+940	40+980	41+080	41+200	41+260	41+360	41+460	41+580	41+640	41+760	41+800	41+920	42+080	42+100	42+200		42+230	42+280	42+480		42+540	42+580	42+700	42+740	42+900	42+960	43+140	43+200
Loca	West Side Extension	12th Ave Intersection	W. 42nd Street	W. 42nd Street	11th Ave Intersection	W. 42nd Street	W. 42nd Street	10th Ave Intersection	W. 42nd Street	W. 42nd Street	9th Ave Intersection	W. 42nd Street	W. 42nd Street	8th Ave Intersection	W. 42nd Street	W. 42nd Street	7th Ave & Broadway	W. 42nd Street	W. 42nd Street	6th Ave Intersection	W. 42nd Street	W. 42nd Street	5th Ave Intersection	E.42nd Street	E.42nd Street	Madison Ave	Intersection	E.42nd Street	E.42nd Street	Lexington Ave	Intersection	E.42nd Street	3rd Ave Intersection	E.42nd Street	2nd Ave Intersection	E.42nd Street	1st Ave Intersection	East Side Extension

2) For areas of sewer mains, linear foot cost doubled on recommendation of NYCDEP.

1) General linear foot cost escalated 35% based on

conversation with NYCDEP and NYCDDC.

4) NYCDEP and NYCDDC indicated price escalations are very approximate.

3) Linear foot cost based on escalated prices from May 1997 NYCDOT report.

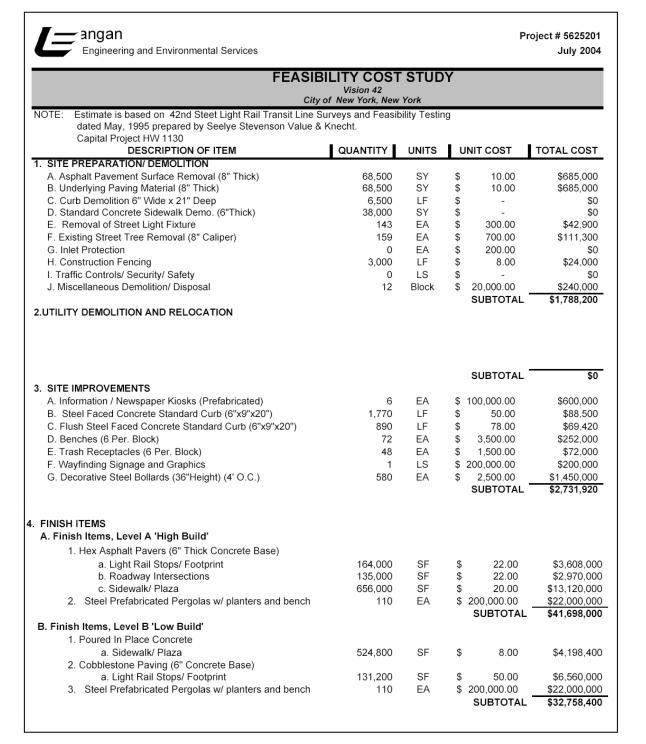
וטומו	4602 m (15,094 ft) 957 m (3,138 ft)
tal.	

- 1) Utility and vault relocation based on 6 meter effected area. (3 meters on either side of street center.)
- 2) All values in meters. (Convert to feet multiply by 3.28)
 3) Sewer main represents 2.6 meter diameter pipe. Sewer represents .8 meter diameter.
 4) At intersections, minimum of 6 meters of utilities running north/south will have to be deepened to allow for LRT foundations.

Appendix C

Details of Base Costs for Streetwork, Landscaping and Stops in 2004 Dollars

FEASIBILITY COST SUMMARY


Vision 42 City of New York, New York

NOTE: Estimate is based on 42nd Steet Light Rail Transit Line Surveys and Feasibility Testing dated May, 1995 prepared by Seelye Stevenson Value & Knecht.

Capital Project HW 1130

COST SUMMARY:		AL COST: EL FINISHES	TOTAL "B" LEVEL	
1. SITE PREPARATION/ DEMOLITION		\$1,788,200		\$1,788,200
2. UTILITY DEMOLITION/ RELOCATION		\$0		\$0
3. SITE IMPROVEMENTS		\$2,731,920		\$2,731,920
4. FINISH ITEMS		\$41,698,000		\$32,758,400
5. DRAINAGE		\$0		\$0
6. UTILITY		\$0		\$0
7. SITE LIGHTING		\$2,222,870		\$815,800
8. LANDSCAPE PLANTING		\$451,500		\$241,000
SUBTOTAL - 20% CONTINGENCY				\$38,335,320 \$7,667,064
TOTAL ESTIMATED COST-			CAV	\$46,002,384
SUBTOTAL- 20% CONTINGENCY		\$48,892,490 \$9,778,498	SAY	\$46.1 millior
TOTAL ESTIMATED COST-	SAY	\$58,670,988 \$58.7 million		
Notes:				
 See final page of 'Cost Estimate Costs identified in Cost Summa 	ry are base	d on the Cost Est		been
rounded up to the nearest thous		S.		

U:/Data2/5625201/Office Data/Streetscape estimate-07-13-04

DESCRIPTION OF ITEM	QUANTITY	UNITS	l	INIT COST	TOTAL COST
5. DRAINAGE					
A. Area Drains B. Convert CB Grate C. Roof Leaders D. Replace Outfall Grates E. Reset Outfall Manhole Covers F. Existing Outfall Improvements (allowance)	0 0 0 0 0	EA EA LS EA LS	\$ \$ \$ \$ \$	2,500.00 1,500.00 200.00 10,000.00 1,000.00 25,000.00 SUBTOTAL	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0
A. Fire Hydrant w/ Valve B. 6" Waterline w/in Sleeve and Insulate C. 2" Waterline w/in Sleeve D. 6" Valve E. 8" Sanitary w/in 12" Sleeve F. 8" Sanitary in Road G. Sanitary Manhole H. Tie into Existing Manhole I. Flexible Connections J. Gas w/in Sleeve K. Cable w/in Sleeve L. T-Phone w/in Sleeve M. Electric w/in Sleeve N. Electric (hung from pier) O. 2" Water Valves P. Backflow Preventor	0 0 0 0 0 0 0 0 0 0	EAFFAAFEELLFFAA	***	3,000.00 100.00 75.00 500.00 100.00 100.00 3,000.00 500.00 2,500.00 25.00 25.00 25.00 35.00 500.00 1,000.00 SUBTOTAL	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$
7. SITE LIGHTING A. Level A 'High Build' 1. Pole Foundations, 24" Dia. (Pre-cast) 2. Twin Hess Pollux Light Fixture (250 Watt Metal Halide) Mounted on 30' High Pole 3. Single Hess Pollux Light Fixture (250 Watt Metal Halide) Mounted on 30' High Pole 4. Underground Feeder Cable	198 95 103 13,760	EA EA EA	\$ \$ \$	1,500.00 9,560.00 8,010.00	\$297,000 \$908,200 \$825,030 \$192,640
(includes exc. and backfill) 5. Specialty Lighting (20 Per Area) 6. Demolition of Existing Footings	140 143	EA EA	\$	9,000.00 300.00 SUBTOTAL	\$1,260,000 \$42,900 \$2,222,870
B. Level B 'Low Build' 1. Retrofit Existing Footings 2. Twin Sterner Light Fixture (Grand Central) (250 Watt Metal Halide) Mounted on 25' High Pole 3. Single Sterner Light Fixture (Grand Central) (250 Watt Metal Halide) Mounted on 25' High Pole	143 56 85	EA EA	\$ \$	300.00 7,700.00 4,020.00	\$42,900 \$431,200 \$341,700 \$815,800

DESCRIPTION OF ITEM	QUANTITY	UNITS	L	UNIT COST	TOTAL COST
					•
8. LANDSCAPE PLANTING					
A. Level A 'High Build'					
 Trees, furnished and planted, 3.5"-4" Caliper 	243	EA	\$	1,500.00	\$364,500
Misc. Plant Material, Purchased & Planted	0	EA	\$	40.00	
Drainage For Planters	0	LF	?		
4. Soil For Tree Pits	174	Truck	\$	500.00	\$87,000
B. Level B.II. and B. Vall				SUBTOTAL	\$451,500
B. Level B 'Low Build'	400	_^	•	4 500 00	¢400.000
 Trees, furnished and planted, 3.5"-4" Caliper (35' O.C.) Soil For Tree Pits 	132 86	EA	\$ \$	1,500.00 500.00	\$198,000
2. Soli For Tree Pits	86	Truck	Ф	500.00	\$43,000
				SUBTOTAL	\$241,000
				002.01.12	4211,000
	TOTAL - (A Finishes Included) 20% CONTINGENCY			s Included)	\$48,892,490
				\$9,778,498	
		EST	TIMA	ATED COST	\$58,670,988
				SAY	58.7 million
	TOTAL - (B Finishes Included) 20% CONTINGENCY				*** *** ***
					\$38,335,320
					\$7,667,064
	ESTIMATED COST SAY				\$46,002,384 46.1 million
				SAT	46.1 MIIIION

Notes:

- Costs are preliminary and are for budgetary purposes only. Unit costs are based on several sources and are approximate.
- Festival Sheds and Kiosks figures are based on open-air structures with no walls (interior or exterior) or amenities.
- 3. Cost does not include traffic control, temporary improvements, permits, or fees that may be required.
- 4. Underlying removal of pavement material does not include removal/ demolition of concrete pavement, cobblestone, or any other paving materials or obstructions.
- 5. Subway stairs/ stations adjustments, removal, and installation are not included in cost estimate.
- 6. Kiosk construction/ installation not included in cost estimate.
- 7. No Structural Slabs @ vaults or subway strair, concourses, etc.